Crocetin Overproduction in Engineered Saccharomyces cerevisiae via Tuning Key Enzymes Coupled With Precursor Engineering
نویسندگان
چکیده
منابع مشابه
Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering
BACKGROUND Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, whic...
متن کاملHeterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae
BACKGROUND Due to excellent performance in antitumor, antioxidation, antihypertension, antiatherosclerotic and antidepressant activities, crocetin, naturally exists in Crocus sativus L., has great potential applications in medical and food fields. Microbial production of crocetin has received increasing concern in recent years. However, only a patent from EVOVA Inc. and a report from Lou et al....
متن کاملComparative Proteomics Analysis of Engineered Saccharomyces cerevisiae with Enhanced Biofuel Precursor Production
The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strain...
متن کاملMetabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, ...
متن کاملMetabolic engineering of Saccharomyces cerevisiae.
Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2020
ISSN: 2296-4185
DOI: 10.3389/fbioe.2020.578005